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__________________________________________________________ 
 We consider the problem of coordinating the operations of two supply chain partners: a foreign 
shipping company and a domestic port. The two partners have conflicting business objectives, and the issue 
is to determine the optimal cycle time, by which the shipping company removes the empty containers from 
the domestic port, so that the joint profit of the two partners is maximized. The domestic port prefers a 
shorter cycle time to mitigate its empty container accumulation and land use problems, while the shipping 
company wishes a longer cycle time to save its expensive vessel capacities. We propose an iterative 
procedure to search for this optimal cycle time. In each iteration, a candidate cycle time is evaluated by 
solving a deterministic vessel scheduling problem and a stochastic container-yard capacity optimization 
problem. We prove the properties of the vessel scheduling problem, derive the optimality condition under 
which the vessel scheduling problem can be decomposed, and show that the profit function of the domestic 
port is convex and thus the optimal container-yard capacity can be determined efficiently. Empirical 
observations on the algorithm computational performance collected from over 300 randomly generated test 
cases under various problem settings are reported.   
 
Key words: Supply chain collaboration, vessel scheduling, container-yard management. 

__________________________________________________________ 
 
1. Introduction 
 
 It is known that the collaboration among transportation partners has a major 
impact on the performance of a supply chain (Carter and Ferrin, 1995).  Achieving this 
collaboration in practice, however, is not always an easy task. Due to many practical 
reasons (e.g., expensive vessel waiting time for loading empty containers, ever increasing 
trade imbalances, and low cost of producing new containers in Asia, etc), the 
accumulation of (used and often damaged/unwanted) empty containers, and consequently 
the land use, has been a major issue faced by many US ports (Boile, et al, 2004, 
VTC/HDR, 2004). This inefficiency has in turn increased the shipping and importation 
cost of many domestic shippers who outsourced their productions to low cost foreign 
countries. 
 
 In this study, we develop mathematical models and algorithms to support a 
collaborative planning and scheduling of container operations for supply chain logistics 
partners. In particular, we consider a hypothesized model (see Figure 1) involving a 
domestic port (port P1) that operates a container-yard for empty containers and a foreign 
shipping company that is home-based at a foreign port (port P0) and owns the empty 
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containers accumulated at port P1. To relieve the empty container accumulation at port P1, 
the shipping company is willing to allocate a portion of the vessels’ return trips to bring 
back its own empty containers. However, by offering this, the vessel capacity for 
profitable commercial cargos on the return trips is also reduced. The domestic port 
receives random arrivals of empty containers from inland customers (shippers) and 
wishes to reduce its overall cost of managing the container-yard. The issue of the 
coordination is the cycle time (denoted as T throughout this paper) between two 
consecutive visits of the vessels to the container-yard to remove the empty containers. 
From the domestic port’s point of view, the more frequently the shipping company visits 
the container-yard (i.e., the smaller the T value), the lower the operational cost and the 
less pressure imposed by container accumulation will be. On the other hand, from the 
shipping company’s point of view, the less frequent visit to the container-yard, the more 
vessel capacity will be available for its profit-making business trips. Our focus of this 
study is thus on identifying the optimal cycle time, T*, that maximizes the joint profit of 
the two supply chain partners over a given planning horizon. 
 

 
Figure 1. An illustrative graph for the port to port operations. 

 
 It should be pointed out that the port and foreign vessel collaboration problem in 
practice is very complicated. It contains many detailed operational components and 
government regulation issues that we are not able to cover in our mathematical 
programming formulation and optimization. As the amount of U.S. business outsourced 
abroad exceeds the level of $4 trillions (Logistics Today, 2006), as the ratio of 
importation to exportation gets closer to 2:1, and as the accumulation of empty containers 
at ports exceeded 2.5 million tractor-equivalent units occupying thousands of acres of 
expensive land like NJ/NY area, repositioning empty containers to their origins is no 
longer a cost/profit issue but an obligation under the trade agreements. Since our focus of 
this study is to develop new theoretical and algorithmic results for the related vessel 
scheduling and the vessel-port collaboration problem, our hypothesized shipping model is 
a simplified one. Therefore, our results are limited to only serving as a decision support 
tool for the related optimization problems. Nevertheless, this study proves theoretically 
two important properties of the vessel scheduling problem and addresses a variation of 
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the vessel-port collaboration problem for which we are not aware of any available 
optimization result in the literature of scheduling. 
  
 Our study was partly motivated by the practical issues faced by a primary Asian 
shipping company in its collaboration with a major U.S. port on repositioning the empty 
containers. Most assumptions below (although simplified) are based on the real life 
container operations of this company, upon which we shall define our vessel scheduling 
and the container-yard capacity optimization problems over a given planning horizon H.   
 
Assumptions on the foreign shipping company’s operations  
  
             The shipping company is home-based at a foreign port, denoted as P0, and owns a 
fleet of identical vessels, V0. Each vessel has a loading capacity, c, measuring the 
maximum number of standard containers it may carry. The vessels in set V0 are divided 
into two groups for the given planning horizon, those transporting empty containers on 
their return trips are called backhaul vessels, and those assigned to transport commercial 
imports/exports cargos on both forward and return trips are called business vessels. The 
backhaul vessels transport cargo containers on their forward trips (thus make a profit) to 
port P1, while serve as express liners reserved for empty containers on their return trips 
back to port P0. 
 

In the hypothesized shipping problem upon which we conduct our mathematical 
analysis, we assume that there is always a sufficient amount of customer orders that need 
to be shipped from P0 to P1. Let K be the set of customer orders to be considered for 
transportation by the backhaul vessels during a given planning horizon H. All customer 
orders are released at port P0 and are heading for port P1. Order i, ,Ki ∈  is released at 
time ir  and becomes available for shipping after that. Starting from ,ir  the order can wait 
at most for π  time units or the customer will withdraw the order and seek for a different 
shipping company. Associated with each order i, there is also a shipping quantity (in 
terms of the number of containers used), ,id  a profit iα , and a receiving time window 

],[ ii ba  at the domestic port P1. A holding cost, $h, occurs if order i arrives at P1 before 

ia . The delivery becomes infeasible if the order arrives after .ib  In addition, vessels’ 
waiting time at port P1 results in a penalty,  $q/(unit time, vessel), and cannot exceed a 

maximum waiting time limit denoted as .maxW  Let τ⋅2  denote the round trip time 
between the foreign port P0 and the domestic port P1. Figure 2 illustrates this shipping 
process associated with an individual backhaul vessel trip. 

 
For any cycle time T agreed by the two supply chain partners, the shipping 

company has to commit ⎡ ⎤TV /2|| τ=  backhaul vessels for a given planning horizon H,  
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where 0VV ∈  denotes the set of backhaul vessels needed to meet the cycle time T. We  

assume that each backhaul vessel is assigned to perform 10 ≥l  round trips over the given 

planning horizon. This leads to a total of 0|| lV ⋅  vessel visits to the container-yard at port 

P1 to be scheduled. Let }||,...,2,{ 0 TlVTT ⋅⋅=Λ  be the set of fixed visiting time points, 

,|||| 0lV ⋅=Λ  at exactly each of which a backhaul vessel carrying empty containers 
departs port P1.  
 

In this study, we focus on two optimization problems: scheduling the forward 
trips of backhaul vessels and coordinating the operations of backhaul vessels and the 
domestic port to return empty containers to the foreign port. To make the resulting vessel 
scheduling problem manageable as a mixed integer program in the analysis, we have 
omitted many details of the real life shipping process, such as the vessel loading/ 
unloading operations at ports, positioning the containers onboard ship to facilitate an 
efficient discharge at the destination port, seasonality of the demand, possibility to halt 
loading empty containers in the case a vessel is behind the schedule, and port labor idle 
time, etc. Also, to focus on the collaboration of the backhaul vessels and the domestic 
port, we simplify in this study the operational optimization of business vessels. Let β  be 
the average profit generated by a business vessel over the planning horizon H. The profit 
of the shipping company for any given cycle time T is thus defined by 

  )(TFξ = |)||(| 0 VV −⋅β + G(T),  
where G(T) stands for the total profit generated by the backhaul vessels in set V, and  
 

      G(T)= Profit of forward trips – (order holding cost at P1 + vessel waiting cost at P1).  

We assume that the transportation of empty containers does not generate profit for the  

 
Figure 2. An illustration of a vessel waiting time at port P1. 
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shipping company, which reflects the practice that transporting the empty containers back  
to the origin is more an obligation issue than a profit-making business. Backhaul vessels 
generate profit only by transporting cargo containers in its forward trips from P0 to P1. 
Clearly, the function |)||(| 0 VV −⋅β   increases as the number of backhaul vessels, |V|, 
decreases, or equivalently as the cycle time T increases. 

Assumptions on domestic port’s operations  
 
The container-yard at the domestic port, port P1, receives a service fee (revenue) 

of $bc for every vessel-load containers it handled (i.e., arrived at port P1 as cargo 
containers and later returned by the in-land domestic shippers as empty containers to the 
container-yard at port P1), where a unit of vessel-load is measured by c which stands for 
the maximum loading capacity of a vessel. Port P1 pays for a total of $ sb Q⋅  for operating 
a container-yard of capacity Q (in the unit of c) over the given planning horizon[a]. Let X 
stand for the number of empty containers accumulated at the container-yard when a 
backhaul vessel arrives. Thus, X is a random variable (since the empty containers are 
returned by the customers at random times). The assigned backhaul vessel can only 
remove { , }Min X c  empty containers at the visit. It is assumed that the amount of empty 
containers exceeding the container-yard capacity Q is overflowed to the other domestic 
ports (or say blocked).  Each unit of overflowed containers costs φ$ . Given the return 
rate of empty containers, λ, to the container-yard at port P1, the domestic port’s profit is 
thus defined as  

 ( ) ( ( , )),D c sT b H b Q E Q Tξ λ φ δ= ⋅ ⋅ − ⋅ − ⋅  

where all quantities are in units of c, ),( TQδ stands for total quantity of containers 
blocked over the planning horizon H, and )),(( TQE δ  is the expected value of ).,( TQδ  
  
Our problem is to determine the optimal cycle time, *,T  the vessel operation schedule 

that accommodates *,T  and the optimal capacity *Q of the container-yard at P1 so that the 

joint profit, ),()( ** TT DFtotal ξξξ +=  is maximized. We shall call this problem the 
coordination problem, or problem P, in the rest of this paper. This coordination problem 
imposes several challenges. First, we are facing a challenging deterministic vessel 
scheduling problem, which includes some well known NP-hard sub-problems. Second, to 
determine the optimal container-yard capacity under random arrivals, we need to solve a 
stochastic optimization problem. Neither of these problems alone is trivial.  

 
_______________________ 
[a. Since the length of the planning horizon is fixed, parameter bs is treated as a constant here.  
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 In this study, we propose an iterative approach to solve this coordination problem. 
In each iteration, a candidate cycle time (T) is evaluated by solving a deterministic vessel  
scheduling problem and a stochastic container-yard capacity optimization problem. To 
improve the efficiency of the search, we analyze the properties of the associated vessel 
scheduling problem which lead to an efficient local optimization algorithm. We then 
prove that the profit function of the domestic port, ( ),F Tξ  is convex, and thus an efficient  
search procedure exists for determining the optimal container-yard capacity. The optimal 
cycle time *T is finally determined after a linear search over a given range of candidates.  
 
 There has been an abundant literature on the vessel scheduling problem during the 
past few decades. Among those more recent works, Perakis (1996) proposed a model to 
find the optimal fleet size and the associated liner routes. By generating a number of 
candidate routes for different vessels, the problem was solved as a linear programming 
model. Fagerholt (1999) presented a model to determine the optimal fleet size and their 
weekly liner routes. The problem was solved by employing a set partitioning approach as 
a multi-trip vehicle routing problem. Bendall and Stent (2001) proposed a model to 
determine the optimal fleet configuration and associated fleet deployment plan in a 
container vessel hub and spoke application. Sambracos et al. (2004) solved the coastal 
freight shipping problem via two phases: the strategic planning phase by a linear 
programming model to determine the fleet size; and the operational scheduling phase via 
solving a vehicle-routing type problem. Fagerholt (2004) presented a decision support 
system, called TurboRouter, that applies rule-based heuristics to assign cargos to vessels 
under various practical constraints. Chen et al (2006) proved the solvability of a special 
case of the bi-directional container vessel scheduling problem and used that property to 
develop a heuristic scheduling algorithm. Two comprehensive reviews of the results in 
this area can be found in Ronen (1993) and Christiansen et al. (2004). To our knowledge, 
however, vessel scheduling with conflicting objectives has not received much attention in 
the literature.  
 

The container yard capacity problem is related to that of a finite Dam, see, e.g., 
Moran (1954), Prabhu (1965) and Avi-Itzhak and Ben-Tuvia (1963). It is also related to 
the problem of queuing systems with limited waiting room, such as the problem of call 
center blocking. Harel (1990) and Jager and Doorn (1986) prove various convexity 
properties for the Erlang loss formula in service rate, arrival rate and the number of 
servers. The Erlang loss formula is based on M/G/x/x queueing model which differs from 
our model with one server and finite buffer. More recently, Kumaran, et al. (2003) 
considers fluid queues with continuous-state space, and proves that the faction of 
overflow of a queueing system with finite buffer and constant service time is convex in 
the buffer size and service rate. In contrast, we consider discrete state space where each 
container takes certain amount of buffer capacity. We provide a novel and simple proof 
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technique based on sample path analysis to show the convexity result. Other related 
convexity results in queueing-inventory problems can be found in Shanthikumar and Yao 
(1991) and Li and Zhang (2000). An important feature that distinguishes the container-
yard problem analyzed in this paper from those commonly considered in the literature is 
the cost associated with the overflow, its trade-off with the cost of container-yard 
capacity, and the need of having both in one analysis.  

 
 The remaining part of this paper is organized as follows. In Section 2, we analyze 
the properties of the vessel scheduling problem with a given cycle time T. These 
properties allow us to develop a fast local optimization algorithm for solving the 
backhaul vessel scheduling problem. We also discuss the condition under which the 
heuristic indeed achieves the optimal solution. In Section 3, we prove the convexity of 
the profit function of the container-yard under a given cycle time T, and propose an 
incremental search procedure to determine the optimal container-yard capacity with 
respect to T. Based on the analytical results in Sections 2 and 3, we then propose an 
iterative search procedure to solve the coordination problem P. In Section 4, we report on 
the empirical performance of the search algorithms, and finally in Section 5, we conclude 
the study and discuss future extensions of this work. 
 
2. The vessel scheduling problem with a given cycle time T 
 
 For any given cycle time, T, let }||,...,2,{ 0 TlVTT ⋅⋅=Λ  be the sequence of fixed 

(empty container) pickup times at the container-yard, where each pickup time, ,, Λ∈nvs  

is associated with a particular backhaul vessel Vv ∈ and one of its trips, n, .1 0ln ≤≤  

Since we ignore the loading/ unloading time here, nvs ,  is also the departure time of vessel 

v from 1P during its nth trip over the planning horizon. Let P(T) denote the respective 
backhaul vessel scheduling problem, and let 
 
 Zv,n,k Binary variables, Zv,n,k = 1 if order k is carried by v, ,Vv ∈  during its nth 

 trip, ;1, 0lnKk ≤≤∈  

 ek The earliness of the arrival time of order k at domestic port 1P ; 
 nvW ,  The waiting time of vessel v during its nth trip at domestic port 1P ; 

 ,v nt  The departure time of the nth trip of vessel v from 0P , Vv ∈ , 01 .n l≤ ≤  

 
Problem P(T): 

k
edhWqZVVTMax

k
k

v n
nvknv

v n k
k

F ⋅∑ ⋅−∑∑ ⋅−⋅∑∑∑+−= ,,,
0 |)||(|)(. αβξ  (1)   

s.t. 
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Constraints on the order-vessel assignment 

, , 1v n k
v n

Z k K≤ ∀ ∈∑∑  (2)         

The vessel capacity constraints   
cdZ k

Kk
knv ≤∑

∈
,,          0...,,2,1, lnVv =∀∈∀  (3) 

Constraints on the departure times of consecutive vessel trips   

1,,, 2 +≤++ nvnvnv tWt τ       0...,,2,1, lnVv =∀∈∀  (4) 

Lower bound on the departure time of each vessel trip  
KklnVvZrt knvknv ∈∀=∀∈∀⋅≥ ,,...,2,1,, 0,,,  (5) 

KklnVvZaet knvkknv ∈∀=∀∈∀⋅≥++ ,,...,2,1,, 0,,, τ  (6) 

Upper bound on the departure time of each vessel trip 
KklnVvZMrt knvknv ∈∀=∀∈∀−⋅++≤ ,,...,2,1,),1()( 0,,, π  (7) 

KklnVvZMbt knvknv ∈∀=∀∈∀−⋅+≤+ ,,...,2,1,),1( 0,,, τ  (8)  

Constraints on the empty-container pickup time   

nvnvnv sWt ,,, =++ τ      0...,,2,1, lnVv =∀∈∀  (9) 

Constraints on the vessel waiting time at the domestic port   

0
max

, ,...,2,1,, lnVvWW nv =∈∀≤  (10) 

Other constraints  
,1,,},1,0{ 0,, lnKkVvZ knv ≤≤∈∀∈∀∈  and all the other variables are non-negative.  

 
 Note that, for any given cycle time T, |V| is a constant and so is the total profit by 

the business vessels, |).||(| 0 VV −⋅β  Therefore, the objective function of P(T) is 
equivalent to  
 
 

k
edhWqZTGMax

k
k

v n
nvknv

v n k
k ⋅∑ ⋅−∑∑ ⋅−⋅∑∑∑= ,,,)(. α   (1’) 

 
 Problem P(T) is a generalized bin-packing problem and involves |||| 0 KlV ⋅⋅  
binary variables. Solving P(T) directly could be very time consuming specially when the 
problem size is large. Therefore, we are interested in solving P(T) heuristically.  
 
 To construct such a heuristic vessel scheduling algorithm, let’s first consider the 
following single-vessel and single-trip scheduling problem. Let v denote the given vessel 
that is about to perform its nth trip, and nvs ,  be the respective pickup time at 1P for the 

empty containers. Since nvs ,  is fixed, the time interval within which vessel v may depart 

from P0 is known and is given as 
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     ].,[ ,
max

, ττ −−− nvnv sWs   

 
Therefore, the set of orders that can be feasibly considered for the transportation by 
vessel v during its nth (forward) trip to 1P , where ,1, 0lnVv ≤≤∈ must satisfy the 
following conditions: 
 

max
,

, ,
max

,

(11)
(12)
(13)

k v n

v n k v n

v n k

r s W
k K r s

s W b

π τ
τ

⎧ ⎫
⎪ ⎪

+ ≥ − −⎪ ⎪
⎪ ⎪Φ = ∈ ≤ −⎨ ⎬
⎪ ⎪− ≤⎪ ⎪
⎪ ⎪⎩ ⎭

 

 Let ,kZ  ,,nvk Φ∈ be binary variables, and kZ =1 iff order k is chosen to be 

delivered by vessel v during the trip. Let W be the vessel waiting time at 1P  and t be the 
departure time of the vessel from P0. Then, this single-vessel single-trip problem, denoted 
as P(v,n),  can be stated as follows. 
 
P(v,n):  WqedhZnvGMax k

k
kk

k
k

nvnv

⋅−⋅∑ ⋅−⋅∑=
Φ∈∀Φ∈∀ ,,

),(. α   (1a) 

 s.t. 
 The vessel capacity constraint 

cZd kk knv
≤⋅∑ Φ∈∀ ,

       (3a) 

The lower bound on vessel departure time from port P0 

nvkk kZrt ,0 Φ∈∀≥−      (5a) 

nvkkk kZaet ,Φ∈∀⋅≥++τ      (6a) 

The upper bound on vessel departure time from port P0 

nvkk kZMrt ,)1( Φ∈∀−++≤ π     (7a) 

nvkk kZMbt ,)1( Φ∈∀−+≤+τ     (8a) 

Constraint on the empty-container pickup time 

nvsWt ,=++τ        (9a) 

Others 

nvkk keWtZ ,,0,,},1,0{ Φ∈∀≥∈  

 
 As we can see, problem P(v,n) is a knapsack problem with additional constraints 
but no more than |K| binary variables. It is much easier to solve than problem P(T). Now 
we prove the following result. 
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Proposition 1. For any given problem P(T), if condition 

   maxWT −<π            (14) 
holds, then P(T) can be decomposed into 0|| lV ⋅  independent problems, 
P(v,n), with v=1, 2,…,|V|,  n=1,2,…,l0. 
 

Proof:  Since all the vessel departure times from domestic port P1, 
,...,,2,1,, 0, lnVvs nv =∈∀  are fixed, the vessel departure times from port 

P0 are independent of each other. Therefore, the claim is proved if we can 
show  
   ,,, ∅=Φ∩Φ ++ nvnv    

where nv,Φ  and ++Φ nv , are the order sets to be evaluated for the shipment 

by two consecutive vessel trips, ),( nv  and ),,( ++ nv  to the domestic port, 

respectively, and ,,, ++=+ nvnv sTs 01 , , , .n n l v v V+ +≤ ≤ ∈  Consider two 

arbitrary orders, ,,nvk Φ∈  ., ++
+ Φ∈ nvk  We must have 

 πτπ +−≤+ nvk sr , πτ +−−= ++ Ts nv ,   by (12) 

 < max
, WTTs nv −+−−++ τ   by (14) 

    = πτ +≤−− +++ knv rWs max
,   by (11) 

which implies ,+< kk rr  for any ,,nvk Φ∈  and ., ++
+ Φ∈ nvk  Therefore, 

∅=Φ∩Φ ++ nvnv ,,  follows.         

 
  

Proposition 2. If ,
,

cd
nvk k ≤∑ Φ∈∀  then problem P(v,n) can be solved in 

|)(| ,nvO Φ  time. 

Proof: Note that the variable W can be expressed as ,, tsW nv −−= τ  and 

hence it can be eliminated from the formulation simply by assuming for 
variable t that 

.0 , τ−≤≤ nvst  

Consequently, the objective function G(v,n) depends on t positively. We 
next observe that in the optimum we must have 

}.,0max{ tZae kkk −−⋅= τ  

Thus orders nvk ,Φ∈  for which 1=kZ  in the optimal contribution 

kkk edh ⋅⋅−α  to the objective function, and since this contribution must 
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be non-negative (otherwise, we would increase the objective function by 
switching kZ  to 0), the following inequality holds: 

k

k
k dh

at
⋅

−−≥ ατ  

Adding this to the other constraints of problem P(v,n), we get that 1=kZ  

in the optimum for exactly those orders nvk ,Φ∈  for which 

 },min{},max{ τπατ −+≤≤
⋅

−− kk
k

k
kk brt

dh
ar     (15) 

holds. Moreover, since G(v,n) depends positively on t, we must have 
}|},.{min{ ,nvkk kbrt Φ∈−+=Ω∈ τπ  

at the optimum. Thus, problem P(v,n) can be solved by trying all values 
Ω∈t , and for each setting 1=kZ  for exactly those orders nvk ,Φ∈  for 

which (15) holds.                  
 

 Let’s remark that even if ,
,

cd
nvk k >∑ Φ∈∀  problem P(v,n) can be reduced to 

|||| ,nvΦ≤Ω  binary knapsack problems, similarly to the proof above. Consequently, for 

any fixed ,0>ε  we can find in polynomial time a solution to P(v,n) which has no more 
than ε  relative error (see Ibarra and Kim 1975). 
 
 Based on the above results, we propose the following heuristic, called V-
Scheduler(T), for solving P(T) with respect to each given cycle time T.         
 
__________________________________ 
V-Scheduler(T) 
Step 1: Construct sets nv,Φ by (11)-(13) for all the vessels Vv ∈ and all their trips; 

Step 2. Solve the single-vessel single-trip problem P(v,n) based on set nv,Φ  defined in  

 step 1, and return with G(v,n), for all ;1, 0lnVv ≤≤∈  

Step 3. Let .),()( ,∑= ∀∀ nv nvGTG  

__________________________________ 
 
 As we can see from the analysis above, if ,maxWT −<π  then V-Scheduler(T) 
finds the optimal solution to P(T). Otherwise, the optimality is not guaranteed. 
Nevertheless, we show in Section 4 that this heuristic has a promising empirical 
performance for all the test instances randomly generated in our study under various 

parameter settings. Also note that, in practice, condition maxWT −<π  is not uncommon 
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since expensive vessel waiting cost penalizes larger values of maxW , and shipping 
companies usually promise shorter order waiting times π to offer a competitive service 
level for its business customers. 
 
3. The container yard capacity optimization problem 
           
 For any given empty container pick-up cycle time T, the problem faced by the 
domestic port, P1, is to determine its capacity, Q, so as to maximize the operational profit 
over the planning horizon. We define all the quantities in the unit of c. Since the arrival 
rate of empty containers, λ, to the container-yard is fixed, the expected revenue, cb Hλ⋅ ⋅ , 

is a constant, where parameter cb  stands for the service fee per c containers passing 
through port P1. Therefore, maximizing the operational profit is equivalent to minimizing 
the operational costs. To formally define this problem, let  

 
D(T)    The total count of empty containers received by P1 in the cycle of cycle 

time T.  We assume that D(T) follows a Poisson process with rate .T⋅λ  
Q The capacity of the empty container yard (in the unit of c); 
I The quantity of empty containers (in the unit of c) in the container-yard at 

the beginning of a cycle;  
B The quantity of overflows (in the unit of c) in one cycle; 
g(Q) The long-run average cost per unit of time, and 

 

 The objective function of the container-yard capacity optimization problem, for 
any given cycle time T, can now be defined formally as      
   ( ) / ( ) /sg Q b Q H E B Tφ= ⋅ + ⋅     (16) 

In our analysis, we shall focus on the long-run average cost per unit of time, g(Q), 
for the following reasons: first, the long-run average cost is independent of the random 
initial state. Second, if the initial state does not follow steady-state distribution, the 
underlying Markov chain converges quickly to the steady-state. Hence, given a relatively 
long planning horizon, the long-run average cost per time period is an adequate measure 
of the cost. The dynamics of the system are given by: 

 

                                    1( ) (min{ ( ) ( ), } )n n nI Q I Q D T Q c +
+ = + −    (17) 

                                    ( ) ( ( ) ( ) )n n nB Q I Q D T Q += + −                                                 (18) 
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where max{ ,0}a a+ = . We refer to Prabhu (1965) for detailed discussion of the transition 
probability of In and the steady-state distribution of I  and ( )E B .  
 

We now prove the convexity of the cost function ),(Qg  as defined by (16). To 
start, let’s first consider two consecutive levels of the capacity, Q and 1Q + , and the 
corresponding ( )I Q  and ( ).B Q  Proposition 3 below indicates that small changes in Q 
results in small changes in ( )I Q  and ( ).B Q    

 
Proposition 3. If 0 00 ( ) ( 1)I Q I Q Q≤ = + ≤ , then for all 0,n ≥  

       0 ( 1) ( ) 1n nI Q I Q≤ + − ≤                (19) 

        0 ( ) ( 1) 1n nB Q B Q≤ − + ≤                 (20) 

Proof: The proof is by induction. At 0n = , inequality (19) holds by initial 
condition. For 0,n ≥  we shall show that if 0 ( 1) ( ) 1,n nI Q I Q≤ + − ≤  then 

1 10 ( 1) ( ) 1n nI Q I Q+ +≤ + − ≤  and 0 ( ) ( 1) 1n nB Q B Q≤ − + ≤ . To do so, note 

that by Eq. (17),  

1

1

( ) (min{ ( ) ( ), } )

( 1) (min{ ( 1) ( ), 1} ) .
n n n

n n n

I Q I Q D T Q c

I Q I Q D T Q c

+
+

+
+

= + −

+ = + + + −
 

Let’s consider the following two cases, where in Case 1, 
( ) ( 1)n nI Q I Q= + ; in Case 2, ( ) 1 ( 1)n nI Q I Q+ = + . It can be shown that in 

both cases, 1 1( 1) ( )n nI Q I Q+ ++ ≥  and 1 1( 1) ( ) 1n nI Q I Q+ ++ − ≤ . To prove 

inequality (20), note that by Eq. (18),  

( ) ( ( ) ( ) )

( 1) ( ( 1) ( ) 1) .
n n n

n n n

B Q I Q D T Q

B Q I Q D T Q

+

+

= + −

+ = + + − −
 

Let’s consider the same two cases. In Case 1, ( ) ( 1)n nB Q B Q≥ +  and 

( ) ( 1) 1n nB Q B Q− + ≤ . In Case 2, ( ) ( 1)n nB Q B Q= + . The proof is now 

completed.    
  

Remark. Since the proof is based on sample path analysis, no probability 
law needs to be postulated on the demand process.  

 
Proposition 4. )(Qg  is convex in Q for 1.Q ≥  
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Proof: We only need to show that the steady-state ( )E B  is convex in Q. 
To this end, consider ( 1), ( )B Q B Q− and )1( +QB  for any 1.Q >  Since 
the Markov chains are ergodic (see Prabhu 1965), we assume 

0 0 0( 1) ( ) ( 1)I Q I Q I Q− = = +  without loss of generality. For any 0,J >  we 

show  

                            
0 0 0 0

( 1) ( ) ( ) ( 1)
J J J J

n n n n
n n n n

B Q B Q B Q B Q
= = = =

− − ≥ − +∑ ∑ ∑ ∑  (21) 

By Proposition 3 and the initial condition, we have at most 4 cases in any 
cycle 0,n ≥  

Case 1:  )1()()1( −==+ QIQIQI nnn  

Case 2:  ( 1) ( ) ( 1) 1n n nI Q I Q I Q+ = = − +  

Case 3:  ( 1) ( ) 1, ( ) ( 1) 1n n n nI Q I Q I Q I Q+ = + = − +  

Case 4:  ( 1) ( ) 1 ( 1) 1.n n nI Q I Q I Q+ = + = − +  

By Eq. (18), we must have 

( 1) ( ) ( ) ( 1)n n n nB Q B Q B Q B Q− − ≥ − +  in Case 1, 

( 1) ( ) 0 ( ) ( 1)n n n nB Q B Q B Q B Q− − = ≤ − +  in Case 2, 

( 1) ( ) ( ) ( 1)n n n nB Q B Q B Q B Q− − = − +  in Case 3, 

( 1) ( ) ( ) ( 1)n n n nB Q B Q B Q B Q− − ≥ − +  in Case 4. 

It is easy to see that Case 1 in one cycle can only generate Case 1 or 2 or 3 
in the next cycle, Case 2 in one cycle can only generate Case 1 or 2 or 3 in 
the next cycle, Case 3 in a cycle only generates Case 1 or 3 or 4 the next 
cycle, and finally, Case 4 in a cycle only generates Case 1 or 4 in the next 
cycle. Therefore, by the initial condition, each Case 2 must be generated 
by Case 1 in an earlier cycle 'n n< , where  

' ' ' '( 1) ( ) 1 ( ) ( 1) 0n n n nB Q B Q B Q B Q− − = > − + = . 

Furthermore, Proposition 3 implies that in Case 2, ( ) ( 1) 1n nB Q B Q− + ≤ , 

where equality holds only when the next cycle is Case 3. Thus, each Case 
2 with   
  ( 1) ( ) 0 ( ) ( 1) 1n n n nB Q B Q B Q B Q− − = < − + =  

corresponds one-for one to an earlier cycle n’ with  
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' ' ' '( 1) ( ) 1 ( ) ( 1) 0,n n n nB Q B Q B Q B Q− − = > − + =  

which implies that inequality (20) holds for any 0.J >         
 
 Based on Proposition 4, we propose the following algorithm for computing the 
optimal container-yard capacity Q* and operation cost g(Q*) under a given cycle time T. 
 
__________________________________ 
Min_Cost_Capacity (T) 
Step 0: Set Q = 1. 
Step 1: Compute g(Q) and g(Q+1) by (16). 
Step 2. If g(Q) ≤ g(Q+1), then Q* = Q and g(Q*)=g(Q), stop. 
  Otherwise, Q ⇐Q+1, go to Step 1. 
__________________________________ 

In practice, cb may be an increasing function in Q because the port needs to buffer 
greater variation in inventory. If ( )cb Q  is concave, then Proposition 4 and algorithm 

Min_Cost_Capacity (T) still hold if we redefine ( ) / ( ) / ( )s cg Q b Q H E B T b Qφ λ= ⋅ + ⋅ − . 

If ( )cb Q  is not concave, then a full scale search is required to identify the optimal Q* for 
each cycle time T. 
 
 Our analysis in Sections 2 and 3 lead to the following iterative search procedure 
for the optimal cycle time *T . Let ],[ maxmin TT  be the given range of possible cycle 

times, where minT requires all the vessels in set V0 to serve as backhaul vessels, and 
maxT requires the use of only a single backhaul vessel to meet the cycle time T. 

_______________________ 
Algorithm: Cycle_time 
Step 1. ;, 0min profittotaltheonboundlowerfeasibleanyTT =⇐ ξ  
Step 2. (Iteration) 
 Call algorithm V-Scheduler(T) and return with ( )G T ; 

 Call algorithm Min_Cost_Capacity(T) and return with )( *Qg ; 

 Compute 0 *(| | | |) ( ) ( ) ;Total cV V G T b H g Q Hξ β λ= ⋅ − + + ⋅ ⋅ − ⋅  

 If ,0ξξ >Total  then ,,)(, 00 TTTTTTotal Δ+⇐⇐⇐ ξξξ and repeat Step 2; 

Step 3. Let .),(, 0*0* stopandTT ξξξ ⇐=  
_______________________ 
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4. Empirical observations 
  

 In this section, we report our empirical observations on the computational 
performance of the proposed heuristic vessel scheduling algorithm V_Scheduler(T) 
under a given cycle time T.  The heuristic solutions are compared to the best solutions 
obtained by using the CPLEX solver (CPLEX version 9.1) to solve problem P(T) directly 
within a preset CPU time limit (i.e., one-hour). The associated mixed integer 
programming problems encountered in the heuristic search process were all solved by the 
same CPLEX package on a Dell Desktop (PowerEdge 400SC, Pentium4 2.8GHz, 1G 
RAM). We also present a numerical example illustrating the proposed iterative search 
algorithm, Cycle-Time, that aims to maximize the joint profit of the shipping company 
and the container-yard at the domestic port. 
 
 The parameters and their range of values used in this empirical study are 
summarized in Table 1 below. Each combination of these parameter values defines a 
problem setting, for which ten (10) test instances were randomly generated by sampling 
the order sizes ( kd ) from a respective uniform distribution. 
 

Table 1: Parameters used for evaluating the performance of V-Scheduler(T) 

Parameter Base value Range of the parameter values 
Vessel capacity c 4,000 containers  
Number of business orders |K| 30  
Length of planning horizon H 100 days  
Fleet size of the shipping company |V0| 8  
Cycle time T 15 days  
Maximum order waiting time π 12 days 5, 8, 10, 13, 16 days  
Maximum vessel waiting time Wmax 4 days 2, 5, 8, 10, 12 days 
Unit profit per cargo container αk/dk $200 200, 400, 600, 800 
Order size (number of containers) dk Uniform (80, 1500) Uniform (80, dmax), where 

 dmax = 300, 800, 1200, 1500. 
Order release time (at port P0)  ri Uniform (0, H)  
Order receiving time windows [ai, bi] Uniform (0, H)  
Traveling time between two ports τ 12 days  
Vessel waiting cost q $15,000/day  
Cargo holding cost (at port P1)  h $10/(day, container)  

 
The empirical observations on the computational performance of the proposed 

heuristic V_Scheduler(T) are summarized in Tables 2, 2a, 2b, 3, 4a, 4b, 5a, 5b, and 5c. In 
these tables, “CPLEX Optimizer” refers to the approach that solves P(T) directly by the 
CPLEX solver, “MIP-based Heuristic” stands for the proposed vessel scheduling 
heuristic algorithm V_Scheduler(T), and “Performance (error) Gap” stands for the 
relative error between the objective values of the heuristic solution and the best CPLEX 
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solution obtained within one-hour of CPU time (which are thus optimal if and only if the 
CPLEX solver terminates the search before the CPU time limit is exceeded).  As we can 
see, due to the combinatorial nature of the vessel scheduling problem, the CPLEX solver 
failed to find the optimal solution within the preset CPU time limit for most test instances. 
Whenever this is the case, the best solution found by CPLEX within the CPU time limit 
was used as a surrogate of the optimal solution in the comparison.  

 
Table 2 shows the computational performance of the proposed vessel scheduling 

heuristic against the unit profit of customer orders /k kdα with all the other parameters 
fixed at their base values. In this table, “Average” and “Maximum” represent the average 
and the maximum error measures over the 10 randomly generated test instances with 
respect to each /k kdα  value. As we can see , the average error gaps between the heuristic 
solutions and the best solutions obtained by the approach to solve P(T) directly within the 
CPU time limit were well within 2% for all the test instances, while the heuristic required 
much less time to find the near optimal solution. For some instances, we received a 
negative error gap. This means that the proposed vessel scheduling algorithm 
V_Scheduler(T) found a better solution than the best solution obtained by the CPLEX 
solver within the one-hour time limit. Meanwhile, the proposed heuristic required a 
significant less amount of computational effort. Note that while the CPLEX solver was 
also used for solving a generalized knapsack problem during the search process by the 
proposed heuristic, the solution effort was much less than that required for solving P(T) 
directly. 

 

Table 2: Performance of the heuristic against relative unit profit of cargo orders 

CPU Time (Seconds) 
CPLEX Optimizer MIP-based Heuristic 

Performance GAP  /k kdα  

Average Maximum Average Maximum Average Maximum Std. Dev. 
200 3600* 3600* 6.11 21.70 -0.02%* 0.41%* 0.46% 
400 3600* 3600* 3.89 17.38 -0.21%* 0.68%* 0.70% 
600 3600* 3600* 6.92 35.61 0.02%* 0.18%* 0.06% 
800 3600* 3600* 5.53 24.67 0.16%* 1.94%* 1.05% 

*The respective gap was based on the best solution by the CPEX solver within one-hour CPU time limit. 

 
We have also compared the heuristic solution with the optimal solution obtained 

by letting CPLEX solver run without time limit until the optimal solution is found. Table 
2a reports these observations, where we set the parameter value, /k kdα , at its lower, and 

the upper, bound of those in Table 2 (i.e., /k kdα =200, and /k kdα =800, respectively),  
while keeping all the other parameters unchanged. For each given set of parameters, we 
randomly generated 5 test cases and report the optimal solution and the solution time 
need by CPEX solver and by our proposed heuristic. As we can see, the proposed 
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heuristic demonstrated again a very competitive performance when compared to the 
optimal solutions in this case. 

 
In Table 2b, we compared our proposed heuristic solution with the CPLEX 

solution that meets the 5% MIPGAP when the search terminates. As we can see, the 
proposed heuristic demonstrated a strong performance in this case as well while required 
much less amount of time comparing to what needed by the CPLEX solver to reach the 
5% MIPGAP. 

 
Table 2a: Heuristic vs. Optimal solutions 

 
CPLEX Optimal MIP-based Heuristic 

/k kdα   Solution CPU time (s) Solution CPU time (s) 
Gap in solutions 

200     26,037,840  1249     25,902,940  0.67 0.52% 
200     26,649,350  2716     26,649,350  74.47 0.00% 
200     26,253,020  830     26,253,020  0.70 0.00% 
200     26,376,590  1316     26,267,940  1.56 0.41% 
200     27,175,470  9923     27,085,380  0.45 0.33% 
800     37,227,200  7729     37,215,850  0.50 0.03% 
800     34,323,070  271     34,323,070  1.50 0.00% 
800     34,897,670  709     34,386,280  0.55 1.47% 
800     35,630,730  6607     34,805,340  17.91 2.32% 
800     35,377,340  1172     35,285,880  0.52 0.26% 

 
 

Table 2b: Heuristic vs. Theoretical Approximation (MIPGAP=5%) Solutions 
 

CPLEX Solutions that satisfy 
the 5% MIPGAP MIP-based Heuristic 

/k kdα   Solution CPU time (s) Solution CPU time (s) 
Gap in solutions 

200     26,942,160  1948     26,916,760  1.92 0.09% 
200     26,121,790  410     26,121,790  0.66 0.00% 
200     27,285,200  10538     27,285,200  0.53 0.00% 
200     26,919,980  2721     26,810,020  2.39 0.41% 
200     27,182,300  459     27,182,300  0.41 0.00% 
800     33,347,000  57     33,233,290  23.30 0.34% 
800     35,377,200  857     35,377,200  2.80 0.00% 
800     36,764,760  1318     36,764,760  0.61 0.00% 
800     34,720,770  363     34,720,770  122.61 0.00% 
800     36,388,160  8268     36,388,160  0.44 0.00% 

  
Table 3 reports on the computational performance of the proposed vessel 

scheduling heuristic against the order size ,kd  where ∈kd Uniform (80, dmax) and dmax 
=300, 800, 1200, and 1500, respectively. All the other problem parameters were fixed at 
their based values specified in Table 1. As we can see, the heuristic vessel scheduling 
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algorithm, V_Scheduler(T), demonstrated a strong performance in this second set of test 
instances as well, while consistently required a much less amount of search effort.  

 

Table 3: Performance of the heuristic against cargo loads 

CPU Time (Seconds) 
CPLEX Optimizer MIP-based Heuristic 

Performance GAP  
kd  

Average Maximum Average Maximum Average Maximum Std. Dev.
U(80,300) 3600* 3600* 43.26 104.81 0.02% 0.09% 0.03%
U(80,800) 3600* 3600* 50.73 228.47 0.10% 0.36% 0.13%
U(80,1200) 3600* 3600* 64.14 378.72 0.00% 0.27% 0.12%
U(80,1500) 3600* 3600* 47.40 284.30 -0.09% 0.05% 0.28%

*The respective gap was based on the best solution by the CPEX solver within one-hour CPU time limit. 

 
Tables 4a and 4b show the performance of the proposed vessel scheduling 

algorithm against the relative maximum order waiting time at port P0, π/T, where T=15 
and π  was set to be 5, 8, 10, 13 and 16, respectively. All the other parameters remained 
at their base values listed in Table 1. The proposed heuristic V_Scheduler(T) 
demonstrated again a strong computational performance, as compared to the approach of 
solving P(T) directly.   

 
Table 4a: Performance of the heuristic against /Tπ  ratio (|K|=30) 

CPU Time (Seconds) 
CPLEX Optimizer MIP-based Heuristic 

Performance GAP / Tπ  

Average Maximum Average Maximum Average Maximum Std. Dev. 
5/15 3600* 3600* 67.70 299.88 -0.08% 0.00% 0.19% 
8/15 3600* 3600* 7.31 40.47 -0.02% 0.00% 0.06% 
10/15 3600* 3600* 26.66 241.11 -0.01% 0.00% 0.03% 
13/15 3600* 3600* 2.85 9.61 0.02% 0.62% 0.36% 
16/15 3600* 3600* 5.65 18.89 0.31% 1.11% 0.39% 

*The respective gap was based on the best solution by the CPEX solver within one-hour CPU time limit. 

Table 4b: Performance of the heuristic against /Tπ  ratio (|K|=20) 

CPU Time (Seconds) 
CPLEX Optimizer MIP-based Heuristic 

Performance GAP  / Tπ  

Average Maximum Average Maximum Average Maximum Std. Dev. 
5/15 1563.60 3600* 3.01 6.50 0.00% 0.00% 0.00% 
8/15 1944.15 3600* 1.38 7.00 0.00% 0.00% 0.00% 
10/15 1284.62 3600* 2.40 12.50 0.00% 0.00% 0.00% 
13/15 1440.38 3600* 9.88 70.48 0.09% 0.28% 0.12% 
16/15 1833.49 3600* 14.08 44.53 0.22% 0.96% 0.33% 

*The respective gap was based on the best solution by the CPEX solver within one-hour CPU time limit. 
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It is interesting to note that the proposed heuristic V_Scheduler(T) terminated at 
the optimal solution in this experiment under parameter settings π/T=5/15, 8/15 and 

10/15. The reason is that when condition maxWT −<π holds, where we had T=15 and 
Wmax=4 for this experiment, problem P(T) becomes decomposable according to 
Proposition 1 and therefore the proposed heuristic guarantees the optimality. This is also 
evidenced by the maximum errors that are equal to zero for the respective entries in 
Tables 4a and 4b. As we can also see, the heuristic was able to find the optimal vessel 
schedule, in the worst case, in no more than five minutes of CPU time, versus an 
excessive CPU time (more than one hour) needed by the approach that solves P(T) 
directly.    

Table 5a: Performance of the heuristic against max /W T  ratio (|K|=30) 

CPU Time (Seconds) 
CPLEX Optimizer MIP-based Heuristic 

Performance GAP max /W T  
Average Maximum Average Maximum Average Maximum Std. Dev. 

2/15 3600* 3600* 22.48 195.27 -0.11% 0.00% 0.15% 
5/15 3600* 3600* 5.83 38.66 0.00% 0.36% 0.16% 
8/15 3600* 3600* 3.89 10.23 -0.18% 0.16% 0.31% 
10/15 3600* 3600* 22.01 195.78 -0.02% 0.65% 0.32% 
12/15 3600* 3600* 3.97 6.95 -0.19% 0.30% 0.54% 

*The respective gap was based on the best solution by the CPEX solver within one-hour CPU time limit. 

Table 5b: Performance of the heuristic against max /W T  ratio (|K|=20) 

CPU Time (Seconds) 
CPLEX Optimizer MIP-based Heuristic 

Performance GAP max /W T  
Average Maximum Average Maximum Average Maximum Std. Dev. 

2/15 2025.35 3600* 6.27 32.50 0.00% 0.00% 0.00% 
5/15 2283.95 3600* 10.11 95.34 0.07% 0.19% 0.08% 
8/15 1090.65 3600* 0.78 1.38 0.08% 0.38% 0.13% 
10/15 913.07 3600* 5.40 24.58 0.21% 0.79% 0.32% 
12/15 1139.24 3600* 1.23 3.66 0.11% 0.31% 0.13% 

*The respective gap was based on the best solution by the CPEX solver within one-hour CPU time limit. 

 
Tables 5a and 5b summarize the empirical performance of the proposed vessel 

scheduling heuristic against relative maximum vessel waiting time maxW /T, where T=15 
while maxW  varied from 2 days to 12 days. All the other problem parameters remained 
the same at their base values (see Table 1). Again, when maxW  =2 days, the heuristic 

found the optimal solution (Proposition 1) since the condition maxWT −<π was satisfied. 
Table 5c reports on our observations when comparing the heuristic solution with the 
optimal solutions by letting CPLEX solver run without time limit until the optimal 
solution is found.  As we can see, the proposed heuristic achieved near optimal solutions  
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with a much less computational effort. 

Table 5c: Heuristic vs. Optimal Solutions 

CPLEX Optimal MIP-based Heuristic 
max /W T   Solution CPU time (s) Solution CPU time (s) 

Gap in solutions 

10/15     26,373,830  663     26,373,830  0.53 0.00% 
10/15     26,513,570  512     26,513,570  0.70 0.00% 
10/15     26,445,680  238     26,445,680  2.36 0.00% 
10/15     26,554,720  2916     26,469,800  0.52 0.32% 
10/15     26,123,230  401     25,986,960  0.77 0.52% 
12/15     26,585,730  893     26,585,730  0.69 0.00% 
12/15     26,616,250  1001     26,615,410  0.73 0.00% 
12/15     26,672,010  10531     26,638,210  0.69 0.13% 
12/15     26,603,540  639     26,588,910  0.69 0.05% 
12/15     26,546,240  158     26,515,520  2.31 0.12% 

 
Table 5c summarizes the observations from an experiment where, for each given 

set of parameters, we randomly generated 5 test cases and report the optimal solution (by 
letting CPLEX run until the optimal solution is found) and the solution time need by the 
CPLEX solver. In the same table, we also report on the performance of the proposed 
vessel scheduling heuristic. As we can see, the heuristic algorithm demonstrated again a 
very competitive performance when compared to the optimal solutions in this case. 
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Figure 3: Shipping company profit vs. container yard profit. 

 

Figure 3 shows what we observed from a numerical example where the proposed 
iterative search procedure, Cycle_Time, was applied to find the cycle time T* to 
maximize the joint operational profit of the shipping company and the domestic 
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container-yard. For the given range of possible cycle times, ],[ maxmin TT , this iterative 
search procedure calls the algorithms V_Scheduler(T) and Min_Cost_Capacity(T) to 
evaluate each candidate cycle time T and the resulting joint profit of the supply chain 
partners. For each cycle time T, the heuristic V_Scheduler(T) constructs the maximum-
profit vessel schedules to meet the given cycle time, while the Min_Cost_Capacity 
algorithm determines optimal container-yard capacity to minimizes the sum of capacity 
and overflow costs. In this experiment, we set ],[ maxmin TT =[3, 30] so that minT  requires 

all the vessels in the fleet to be backhaul vessels (i.e., VV =0 with no business vessels in 

this case) and that maxT allows a maximum number of business vessels and requires the 
use of only a single backhaul vessel during the planning horizon. We assumed that the 
expected profit per business vessel to be β=$4,000,000 over the planning horizon, while 
all the other problem parameters remained at their base values (see Table 1). The 
parameters defining the container-yard operations at the domestic port P1 were as follows: 
the empty container arrival rate was set at λ =0.03c/day, the container-yard leasing cost 
was assumed to be /sb H = $8,000 per vessel load per day, the overflow penalty cost per 
vessel load was φ =$2,400,000, and finally, the revenue per vessel load was 

cb =$2,000,000.   
 

From Figure 3, we can observe that as the cycle time T increased, the container 
yard’s profit decreased consistently, due to an increasing quantity of blocked containers 
and the need to have a larger container-yard capacity to avoid excessive overflows. On 
the other hand, the shipping company’s profit increased as the cycle time T increased. 
However, the shipping company’s operational profit is not a monotonic increasing 
function of cycle time T due to the discrete nature of the vessel scheduling problem.  
More detailed results obtained from this numerical example is listed in Table 6 where the 
optimal cycle T* is 8 days, which results in a joint profit for the two supply chain partners 
at =*ξ  $11,217,380. 
 
5. Conclusion and future studies 
 
 We studied the problem of coordinating the operations between a foreign shipping 
company and a domestic container-yard for empty containers. The two partners had 
conflicting business objectives and the issue was to determine the optimal cycle time by 
which the shipping company removes the empty containers accumulated at the domestic 
port so that the joint profit of the two partners is maximized. The shipping company 
prefers a larger cycle time as it would allow more vessels to be available for transporting 
profitable cargo containers, while the container-yard prefers a shorter cycle time as it 
reduces the cost of overflows as well as the need for container-yard capacity. An iterative 
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search procedure searching for this optimal cycle time was proposed. Each iteration 
evaluates a candidate cycle time by solving a deterministic vessel scheduling problem 
and a stochastic container-yard capacity optimization problem. A mixed-integer 
programming based heuristic vessel scheduling algorithm was proposed, and the 
condition under which the heuristic finds the optimal solution was identified. An 
incremental search procedure based on the convexity of the profit function of the 
domestic port was derived to determine the optimal container-yard capacity. Empirical 
observations on the algorithm performance were reported, and a numerical example that 
illustrates the use of the proposed iterative procedure was included. 
 
 This study can be extended in several ways. First, the port-to-port shipping 
process hypothesized in this study is a relatively simple one as compared to those 
encountered in practice. Many important factors, such as loading/unloading operations, 
port availability, possibility for a vessel to leave at an earlier time, seasonality in the 
demand, etc., have been omitted here in order to make the optimization problem 
manageable in the mathematical analysis. A detailed simulation study that focuses on the 
same vessel-port collaboration issue but takes these important factors into account will be 
an interesting extension of the work. Second, we have assumed that the empty containers 
can be loaded to a backhaul vessel instantaneously at the pre-specified time points. This 
is, however, no longer the case if the container loading facilities (e.g., cranes, berths) 
have to be scheduled to accommodate the need. Coordinating the vessel operations and 
the loading/unloading facility operations would require a more sophisticated scheduling 
algorithm. In addition, we have considered only port-to-port with homogeneous vessels 
in this study. However, in reality vessels owned by a shipping company could vary 
significantly in their speeds and loading capacities, and a vessel may visit many ports 
along its route. When the heterogeneity of vessels and the vessel routing have to be 
considered,  the vessel dispatching issue arises and the resulting scheduling problem 
could become much more complex but also more interesting. 
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Table 6: Shipping company and container yard profit against pick-up cycle T 

Shipping Company Container Yard Cycle 
T m A1 A2 A3 A4 Total Q* B1 B2 B3 Total 

Total Profit 

3 8 $0 $4,719,400 $0 $745,600 $3,973,800 1 $6,000,000 $800,000 $313,881 $4,886,120 $8,859,920 
4 6 $1,000,000 $4,719,400 $0 $618,220 $5,101,180 1 $6,000,000 $800,000 $413,802 $4,786,200 $9,887,380 
5 5 $1,500,000 $4,719,400 $15,000 $599,800 $5,604,600 1 $6,000,000 $800,000 $513,875 $4,686,130 $10,290,730 
6 4 $2,000,000 $4,719,400 $0 $527,880 $6,191,520 1 $6,000,000 $800,000 $610,590 $4,589,410 $10,780,930 
7 4 $2,000,000 $4,719,400 $15,000 $367,070 $6,337,330 1 $6,000,000 $800,000 $705,350 $4,494,650 $10,831,980 
8 3 $2,500,000 $4,719,400 $0 $403,840 $6,815,560 1 $6,000,000 $800,000 $798,177 $4,401,820 $11,217,380 
9 3 $2,500,000 $4,695,600 $90,000 $440,210 $6,665,390 1 $6,000,000 $800,000 $889,089 $4,310,910 $10,976,300 

10 3 $2,500,000 $4,719,400 $60,000 $310,400 $6,849,000 2 $6,000,000 $1,600,000 $135,188 $4,264,810 $11,113,810 
11 3 $2,500,000 $4,415,200 $15,000 $154,950 $6,745,250 2 $6,000,000 $1,600,000 $165,938 $4,234,060 $10,979,310 
12 2 $3,000,000 $4,064,800 $0 $241,380 $6,823,420 2 $6,000,000 $1,600,000 $200,044 $4,199,960 $11,023,380 
13 2 $3,000,000 $4,403,200 $30,000 $354,870 $7,018,330 2 $6,000,000 $1,600,000 $237,488 $4,162,510 $11,180,840 
14 2 $3,000,000 $3,930,600 $60,000 $122,200 $6,748,400 2 $6,000,000 $1,600,000 $278,227 $4,121,770 $10,870,170 
15 2 $3,000,000 $3,709,600 $30,000 $132,740 $6,546,860 2 $6,000,000 $1,600,000 $322,197 $4,077,800 $10,624,660 
16 2 $3,000,000 $3,518,600 $180,000 $91,660 $6,246,940 2 $6,000,000 $1,600,000 $369,961 $4,030,040 $10,276,980 
17 2 $3,000,000 $3,497,800 $30,000 $409,510 $6,058,290 2 $6,000,000 $1,600,000 $420,319 $3,979,680 $10,037,970 
18 2 $3,000,000 $3,197,800 $30,000 $325,850 $5,841,950 2 $6,000,000 $1,600,000 $473,636 $3,926,360 $9,768,310 
19 2 $3,000,000 $3,345,400 $90,000 $333,970 $5,921,430 2 $6,000,000 $1,600,000 $529,773 $3,870,230 $9,791,660 
20 2 $3,000,000 $3,181,600 $75,000 $196,760 $5,909,840 2 $6,000,000 $1,600,000 $588,581 $3,811,420 $9,721,260 
21 2 $3,000,000 $2,855,000 $30,000 $128,200 $5,696,800 2 $6,000,000 $1,600,000 $649,893 $3,750,110 $9,446,910 
22 2 $3,000,000 $2,722,600 $60,000 $117,690 $5,544,910 2 $6,000,000 $1,600,000 $713,534 $3,686,470 $9,231,380 
23 2 $3,000,000 $2,640,600 $30,000 $127,840 $5,482,760 2 $6,000,000 $1,600,000 $779,322 $3,620,680 $9,103,440 
24 1 $3,500,000 $2,631,600 $0 $215,250 $5,916,350 2 $6,000,000 $1,600,000 $847,573 $3,552,430 $9,468,780 
25 1 $3,500,000 $2,660,800 $30,000 $150,110 $5,980,690 2 $6,000,000 $1,600,000 $917,200 $3,482,800 $9,463,490 
26 1 $3,500,000 $2,200,200 $30,000 $147,520 $5,522,680 2 $6,000,000 $1,600,000 $988,413 $3,411,590 $8,934,270 
27 1 $3,500,000 $1,922,400 $60,000 $79,860 $5,282,540 2 $6,000,000 $1,600,000 $1,061,020 $3,338,980 $8,621,520 
28 1 $3,500,000 $1,873,600 $60,000 $60,350 $5,253,250 2 $6,000,000 $1,600,000 $1,134,820 $3,265,180 $8,518,430 
29 1 $3,500,000 $1,803,600 $105,000 $17,810 $5,180,790 2 $6,000,000 $1,600,000 $1,209,620 $3,190,380 $8,371,170 
30 1 $3,500,000 $2,026,000 $15,000 $112,340 $5,398,660 2 $6,000,000 $1,600,000 $1,285,250 $3,114,750 $8,513,410 

m= no. of backhaul vessel; A1= profit of business vessel; A2= profit from spot cargoes; A3= cargo waiting cost; A4=vessel waiting cost;  
Q*= optimal container yard capacity (in terms of c); B1= container yard management fee; B2 = yard leasing cost; B3 = yard overflow cost; 
Shipping company profit= A1+A2-A3-A4; Container yard profit = B1-B2-B3; Total profit = shipping company profit + container yard profit. 


